Research Scotland logo
View Item 
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cost-effective restoration for carbon sequestration across Brazil's biomes

Thumbnail
Date
10/06/2023
Author
Barros, Fernanda de V.
Lewis, Kirsty
Robertson, Andy D. ORCID
Pennington, R. Toby ORCID
Hill, Timothy Charles
Matthews, C.
Lira-Martins, Demetrius ORCID
Mazzochini, Guilherme Gerhardt ORCID
Oliveira, Rafael S. ORCID
Rowland, Lucy M. ORCID
Publisher
Elsevier
Is part of
Science of The Total Environment
Metadata
Show full item record
Abstract
Tropical ecosystems are central to the global focus on halting and reversing habitat destruction as a means of mitigating carbon emissions. Brazil has been highlighted as a vital part of global climate agreements because, whilst ongoing land-use change causes it to be the world's fifth biggest greenhouse gas emitting country, it also has one of the greatest potentials to implement ecosystem restoration. Global carbon markets provide the opportunity of a financially viable way to implement restoration projects at scale. However, except for rainforests, the restoration potential of many major tropical biomes is not widely recognised, with the result that carbon sequestration potential may be squandered. We synthesize data on land availability, land degradation status, restoration costs, area of native vegetation remaining, carbon storage potential and carbon market prices for 5475 municipalities across Brazil's major biomes, including the savannas and tropical dry forests. Using a modelling analysis, we determine how fast restoration could be implemented across these biomes within existing carbon markets. We argue that even with a sole focus on carbon, we must restore other tropical biomes, as well as rainforests, to effectively increase benefits. The inclusion of dry forests and savannas doubles the area which could be restored in a financially viable manner, increasing the potential CO2e sequestered >40 % above that offered by rainforests alone. Importantly, we show that in the short-term avoiding emissions through conservation will be necessary for Brazil to achieve it’s 2030 climate goal, because it can sequester 1.5 to 4.3 Pg of CO2e by 2030, relative to 0.127 Pg CO2e from restoration. However, in the longer term, restoration across all biomes in Brazil could draw down between 3.9 and 9.8 Pg of CO2e from the atmosphere by 2050 and 2080.
DOI
https://doi.org/10.1016/j.scitotenv.2023.162600
Link
https://hdl.handle.net/20.500.12594/26382
Collections
  • Articles [3425]
©Research Scotland Consortium
c/o RBGE 20a Inverleith Row
EH3 5LR
Edinburgh, Scotland, UK

Tel: 0131 248 2850
Email: info@ResearchScotland.ac.uk
Items in Research Scotland are protected by copyright with all rights reserved unless otherwise indicated.
  • Privacy & Cookies
  • Takedown Policy
  • Accessibility
  • Policies
  • Contact
Privacy & Cookies
Takedown Policy
Accessibility
Policies
Contact
 
Advanced Search

Browse

All of Research ScotlandPartners & CollectionsBy Issue DateAuthorsTitlesSubjectsPublishersThis CollectionBy Issue DateAuthorsTitlesSubjectsPublishers

My Account

LoginRegister
©Research Scotland Consortium
c/o RBGE 20a Inverleith Row
EH3 5LR
Edinburgh, Scotland, UK

Tel: 0131 248 2850
Email: info@ResearchScotland.ac.uk
Items in Research Scotland are protected by copyright with all rights reserved unless otherwise indicated.
  • Privacy & Cookies
  • Takedown Policy
  • Accessibility
  • Policies
  • Contact
Privacy & Cookies
Takedown Policy
Accessibility
Policies
Contact