Research Scotland logo
View Item 
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  •   Research Scotland Home
  • Royal Botanic Garden Edinburgh (RBGE)
  • Articles
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grassy ecosystems in the Anthropocene

Thumbnail
Date
10/2022
Author
Stevens, Nicola ORCID
Bond, William ORCID
Feurdean, Angelica ORCID
Lehmann, Caroline E. R. ORCID
Publisher
Annual Reviews
Is part of
Annual Review of Environment and Resources
Metadata
Show full item record
Abstract
Abstract. As the Anthropocene advances, there are few parts of Earth that have not been impacted by human influence. Humans have had a long-sustained interaction with grassy ecosystems, but they are becoming severely impacted by direct and indirect impacts as the Anthropocene advances. Grassy ecosystems are easy to clear and cultivate, poorly protected, and poorly defined due to legacies of colonial narratives that can describe them as deforested, wastelands, or derived. Climate change, land conversion, and the erosion of the processes that have shaped grassy ecosystems for millennia have had cascading and cumulative impacts on grassy ecosystem extent and integrity. We examine how these changes are impacting grassy ecosystems, more specifically, those that fall into ecosystem uncertain space—a climate envelope where vegetation is not at equilibrium with climate and either grassy or forest ecosystems can occur. It is within this space that climate, CO2, and disturbances (fire, herbivores) interact to determine the presence of grassy ecosystems. Changes to any of these components reduce the integrity of grassyecosystems. The loss of these ancient biodiverse ecosystems means loss of an array of ecosystem services fundamental to the lives of more than 1 billion people alongside Earth-system impacts of altered albedo, carbon, and hydrological cycles.
DOI
https://doi.org/10.1146/annurev-environ-112420-015211
Link
https://hdl.handle.net/20.500.12594/24843
Collections
  • Articles [3407]
©Research Scotland Consortium
c/o RGBE 20a Inverleith Row
EH3 5LR
Edinburgh, Scotland, UK

Tel: 0131 248 2850
Email: info@ResearchScotland.ac.uk
Items in Research Scotland are protected by copyright with all rights reserved unless otherwise indicated.
  • Privacy & Cookies
  • Takedown Policy
  • Accessibility
  • Policies
  • Contact
Privacy & Cookies
Takedown Policy
Accessibility
Policies
Contact
 
Advanced Search

Browse

All of Research ScotlandPartners & CollectionsBy Issue DateAuthorsTitlesSubjectsPublishersThis CollectionBy Issue DateAuthorsTitlesSubjectsPublishers

My Account

LoginRegister
©Research Scotland Consortium
c/o RGBE 20a Inverleith Row
EH3 5LR
Edinburgh, Scotland, UK

Tel: 0131 248 2850
Email: info@ResearchScotland.ac.uk
Items in Research Scotland are protected by copyright with all rights reserved unless otherwise indicated.
  • Privacy & Cookies
  • Takedown Policy
  • Accessibility
  • Policies
  • Contact
Privacy & Cookies
Takedown Policy
Accessibility
Policies
Contact